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Abstract
The ground state phase diagram of an X X Z chain with asymmetric second-
neighbour interactions is studied. We first prove that this model has the doubly
degenerate exact dimer ground state under some conditions. Then, by using
the level spectroscopy method, we calculate the ground state phase diagram
and find that the dependence of the dimer–fluid critical line on the asymmetric
interactions is much stronger than those of the dimer–Néel critical line and
the ferro-fluid first-order transition line. In order to understand this result, we
analyse eigenvectors of the ground state and excitations characterizing each of
phases, and show that only the doublet excitation can be used to detect the
asymmetric interactions.

1. Introduction

The study of frustrated quantum spin systems is one of the central issues in condensed matter
physics. The antiferromagnetic Heisenberg chain with second-neighbour couplings, or the
railroad-lattice Heisenberg antiferromagnet, has received considerable attention for a long time,
because it is simple but shows interesting ground state properties [1–3]. The ground state phase
diagram of the X X Z chain with second-neighbour couplings was successfully obtained by
Nomura and co-workers using the level spectroscopy (LS) method [4–7].

A similar model, the sawtooth-lattice Heisenberg antiferromagnet, has been studied by
several authors [8–11]. This model was first introduced as a one-dimensional counterpart of
the Kagomé-lattice Heisenberg antiferromagnet [8], and found to have a two-peak structure in
the temperature dependence of the specific heat [8, 9]. Sen et al pointed out that this model is
realized in YCuO2.5 [10].

Recently, Chen et al introduced a Heisenberg chain with asymmetric second-neighbour
couplings, which contains both of the models mentioned above as special cases [12, 13]. They
used the Abelian bosonization to obtain a double-frequency sine–Gordon model, and asserted
that the asymmetry leads to a new fixed point. However, Sarkar and Sen made an operator
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Figure 1. Schematic representations of (a) the X X Z chain with second-neighbour couplings and
(b) the railroad lattice with asymmetric leg couplings, which is equivalent to the model in (a) and
is reduced to the sawtooth lattice at δ = 1/2. In (a), we define the translation operation t̂ and the
reflection operation Î , which are utilized in section 3.

product expansion of the terms in the bosonized Hamiltonian coming from the asymmetric
couplings, and showed that those terms cancel each other and the new fixed point vanishes [14].
Their result was also checked numerically by Capriotti et al [15].

In this paper, we study the ground state phase diagram of an antiferromagnetic X X Z chain
with asymmetric second-neighbour couplings,

H =
L∑

i=1

hi,i+1 + α

L∑

i=1

{1/2 + (−1)iδ}hi,i+2, (1)

where hi, j = Sx
i Sx

j + Sy
i Sy

j + �Sz
i Sz

j , L denotes the total number of spins, and the periodic
boundary condition SL+1 = S1 is imposed (see figure 1(a)). We also confine ourselves to
0 � α � 1, −1 � � and 0 � δ � 1/2. This model is reduced to the railroad model at δ = 0
and the sawtooth model at δ = 1/2 (see figure 1(b)) [12, 13]. The main purpose of this work is
to study how phase boundaries in the α–� plane depend on the asymmetry parameter δ.

2. Basic properties

We begin with proving that the dimer states,

�1 = [1, 2][3, 4] · · · [L − 1, L] and �2 = [2, 3][4, 5] · · · [L, 1] (2)

with [i, j ] = (|↑i ↓ j〉 − |↓i ↑ j〉)/
√

2, are the ground state of our model for α = 1 and
� � −1/2, following reference [16]. For this purpose, we rewrite the Hamiltonian with α = 1
as follows:

Hα=1 =
L/2∑

l=1

hplaq
l , (3)

where hplaq
l = h2l,2l+1 + (1/2 − δ)(h2l−1,2l + h2l−1,2l+1)+ (1/2 + δ)(h2l+1,2l+2 + h2l,2l+2). The

minimum eigenvalue of hplaq
l is ep = −(2 + �)/4 for � � −1/2 or ep = 3�/4 for otherwise.

Thus the ground state energy, Eg, of Hα=1 satisfies Eg � epL/2. The energy of the dimer state
is −(2 + �)L/8, which proves the existence of the exact dimer ground state for α = 1 and
� � −1/2. On the other hand, the ground state for �<− 1/2 is the ferromagnetic state whose
energy is 3�L/8.

Next, we use the Abelian bosonization to get insight into the ground state phase diagram.
The resultant continuum model is given by

H = a

2π

∫
dx
[
A(∂xφ)2 + B(π	)2

]− C
∫

cos 4φ

(2πa)2
, (4)
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Figure 2. (a) Ground phase diagram in the α−� plane for δ = 0, 1/4 and 1/2 in the thermodynamic
limit L = ∞, and (b) plot of α′(L;�, δ) = αc(L; �, δ) − αc(L;�, 0) as a function of � for
L = ∞ (markers) and L = 4 (lines).

where a is the lattice spacing, and

A = 1 + 3�

π
+ α(6 + �)

2π
, (5)

B = 1 − �

π
− α(2 − �)

2π
, (6)

C = a

(
� − α(2 + �)

2

)
. (7)

As pointed out by Sarkar and Sen [14], the continuum model is independent of the asymmetry
parameter δ. Therefore, it is expected that phase boundaries in the ground state phase diagram
do not depend on δ very much. In fact, numerical studies on the Heisenberg point � = 1 by
Capriotti et al showed that the position of the tricritical point depends on δ just slightly [15].

3. Ground state phase diagram

We employ the LS method to get the phase diagram in the α–� plane [4]. There exist fluid,
Néel, dimer and ferromagnetic states in the ground state phase diagram. In the LS method,
the fluid–dimer (Néel–dimer) transition point is determined as a crossing point of energies
of doublet (Néel) and dimer excitations [4]. The point of the first-order transition to the
ferromagnetic state is determined as an energy crossing point of the ferromagnetic state and the
ground state in the Sz

tot = 0 sector. For fixed values of L, � and δ, we calculate numerically the
energy levels as functions of α to get an energy crossing point αc(L; �, δ). An extrapolation to
the thermodynamic limit L = ∞ is made through αc(L; �, δ) = αc(∞; �, δ)+ const.× L−2,
where finite size data for L = 12, 16, . . . , 28 are used. The extrapolation is rather satisfactory,
and the resultant ground state phase diagram is shown in figure 2(a). We find that the
dependence of the Néel–dimer transition line on the asymmetric parameter δ is quite slight,
which is consistent with the naive expectation based on the bosonized Hamiltonian. We
also find that the line of transition to the ferromagnetic state is almost independent of δ.
However, the δ dependence of the fluid–dimer transition line is increasingly pronounced as
� decreases. In order to see the δ dependences of those transition lines quantitatively, we
define α′(L; �, δ) = αc(L; �, δ) − αc(L; �, 0). We show α′(∞; �, δ) as a function of � in
figure 2(b). Roughly speaking, the δ dependence of the fluid–dimer transition line for �<0 is
ten times that of other transition lines.
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In order to understand the δ dependence of the transition lines, we turn to analysis of
the eigenvectors. We here use the translation operation t̂ , the reflection operation Î , which
are defined in figure 1(a), and the spin inversion operation T̂ . The eigenvalues of t̂ , Î and
T̂ are written as t = eik , I and T below. For δ = 0, it is known that the ground state
is in an Sz

tot = 0 subspace with (T, k, I ) = (1, 0, 1), the dimer excitation is in that with
(1, π, 1), and the Néel excitation is in that with (−1, π,−1). Operation of δ

∑
i (−1)i hi,i+2 on

basis functions with (T, k, I ) = (1, 0, 1), (1, π, 1) or (−1, π,−1) yields basis functions with
(T, k, I ) = (1, π,−1), (1, 0,−1) or (−1, 0, 1). Thus, for δ>0, the ground state eigenvector,
|�gs〉, the eigenvector of the dimer excitation, |�dimer〉, and that of the Néel excitation, |�Neel〉,
are written as follows:

|
gs〉 = |φ1,0,1〉 cos θgs + |φ1,π,−1〉 sin θgs, (8)

|
dimer〉 = |φ1,π,1〉 cos θdimer + |φ1,0,−1〉 sin θdimer, (9)

|
Neel〉 = |φ−1,π,−1〉 cos θNeel + |φ−1,0,1〉 sin θNeel, (10)

where |φT,k,I 〉 represents a unit vector in the (T, k, I ) subspace of |
gs〉, |
dimer〉 or |
Neel〉
and we choose 0 � θ � π/2. (We hereafter call θ the ‘mixing parameter’.) As for the
doublet excitation, it is known that the symmetry of the doublet excitation is characterized by
(Sz

tot, k, I ) = (1, π,−1) when δ = 0. Operation of δ
∑

i (−1)i hi,i+2 on those basis functions
yields basis functions with (1, 0, 1). We can write the eigenvector of the doublet excitation for
δ>0 as

|
doublet〉 = |ϕ1,π,−1〉 cos θdoublet + |ϕ1,0,1〉 sin θdoublet, (11)

where |ϕSz
tot,k,I 〉 is a unit vector in the (Sz

tot, k, I ) subspace of |
doublet〉.
Because the LS method is known to give accurate results even for small size systems, we

first look into the LS analysis of an L = 4 cluster. For the L = 4 cluster, we can obtain the
mixing parameters analytically as follows:

θgs = θdimer = θNeel = 0, θdoublet = tan−1

(√
1 + [αδ(1 − �)]2 − 1

αδ(1 − �)

)
, (12)

which tells us that only the doublet excitation is affected by the asymmetric interactions. As
for the δ dependence of the phase boundaries, we obtain

α′
L=4(�, δ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

3 + �

⎛

⎜⎜⎝
1

√
1 −

[
2δ(1−�)

3+�

]2
− 1

⎞

⎟⎟⎠ for dimer–fluid

0 for otherwise,

(13)

which gives the solid and dashed lines in figure 2(b).
Comparing the result for L = 4 with that for L = ∞ in figure 2(b), we find that the

LS analysis for the L = 4 cluster captures the qualitative nature of the present system, and
thus we expect that only θdoublet can be large even for larger clusters. To check this point, we
calculate the mixing parameter as a function of δ for an L = 12 cluster at two points near
phase boundaries, (�, α) = (−0.5, 0.9) and (1/�, α) = (0.5, 0.7). The results are shown in
figure 3. For (�, α) = (−0.5, 0.9), which is near the dimer–fluid transition line, we find that
θgs, θdimer, θNeel � θdoublet as expected. For (1/�, α) = (0.5, 0.7), which is near the dimer–
Néel transition line, we find all mixing parameters are small. These calculated results indicate
that the pronounced δ dependence of the dimer–fluid transition line is originating from the fact
that only the doublet excitation suffers from large mixing due to the asymmetric interactions.
A more comprehensive study of eigenvectors is now proceeding. The results, together with
details of our numerical calculations, will be reported in a separate publication.
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Figure 3. Mixing parameters θ as a function of δ for (a) (�, α) = (−0.5, 0.9) and (b) (1/�, α) =
(0.5, 0.7). The system size is L = 12.

4. Summary

In summary, motivated by the fact that the bosonized Hamiltonian contains no terms coming
from the asymmetry in the X X Z model with asymmetric second-neighbour couplings, we
have studied the ground state phase diagram by using the LS method. Then, we found that the
dependence of the fluid–dimer transition line on the asymmetry parameter δ is much greater
than that of other transition lines. The distinct δ dependence of the fluid–dimer transition line
can be interpreted as follows: the doublet excitation is a spin wave propagating in the quasi-
long range ordered state, so this excitation can be affected by the short wavelength part of the
Hamiltonian, such as the asymmetry in the second-neighbour couplings. It is worth mentioned
that the triplet excitations, which are low-lying excitations in the dimer phase, can also detect
the asymmetric part, like the doublet excitation. Thus, the triplet excitation gap in the dimer
phase depends on δ [13]. However, our result indicates that the vanishing point of the gap,
which should agree with a level crossing point between dimer and Néel excitations, is almost
independent of δ.
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